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Abstract

We propose aligning AI safety and capability in the long term by op-
timizing for abstract Kolmogorov complexity (K). This process involves
increasing the information encoded by the simplest possible predictive
programs prioritized by the prediction’s level of abstraction. We provide
implementation details for approximating this process in an agent we call
LearnMax. Implemented and experimented within the video game Mon-
tezuma’s Revenge (one of the most difficult long-horizon planning games
in the popular Arcade Learning Environment) this prototype encouraged
a systematic approach to understanding the interplay between safety and
capability within AI agents that are trained largely via unsupervised learn-
ing. In particular we explain how increasing abstract Kolmogorov com-
plexity serves to minimize stagnation, destruction, and termination of said
complexity over the long term. We also note that while this does provide
a degree of safety, it is crucial to concurrently pursue other alignment
objectives in order to avoid potential negative outcomes which may have
high abstract K, yet not align with other shared human values. In this
work, we establish the theoretical foundations of our approach and invite
discussion on its implications for AGI safety. We believe our ideas around
aligning capability with a core component of safety using abstract K are
general, and though our design serves as an explicit architectural imple-
mentation for a tabula rasa system, the same principles are applicable to
pretrained models.

source: https://github.com/crizcraig/learnmax/

Definitions

We define learning as increasing a model’s Kolmogorov complexity, K,Li et al.
[2008] at the highest level of abstraction possible. Since higher levels of ab-
straction encompass larger groups of concrete entities, optimizing for abstract
K entails finding increasingly larger units of repeated complexity across space
and time. Looking for larger repeated entities across time implies planning out
as far as possible which is a critical component of safety.
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Also, we consider plans as discretized into levels of abstraction. So for ex-
ample, if your ultimate goal is to graduate college, then the representation for
graduating, rgraduate, would exist at the maximum level of abstraction, lmax in
your plan, so l(rgraduate) = lmax. Sub-goals to that would then lie at lower lev-
els of abstraction, e.g. passing certain classes could be at lmax − 1 and passing
important exams at lmax − 2, until we eventually reach l0. This bottom level of
abstraction is then defined to be the sensorimotor level where concrete percepts
and actions are made.

Note that a system with maximum information entropy, e.g. a uniform ran-
dom distribution, can have very low K, on the same order of uniform repetition.
This as it’s possible to write a very short program that emits digits of π or uses
some other RNG to create a uniform random distribution. This is why we use
K rather than information entropy in order to more clearly call out aleatoric
randomness as unimportant. However, high K could be due to high true ran-
domness if true randomness indeed exists, which it currently appears to at the
quantum level. Additionally, we cannot compute K directly or extract aleatoric
processes like RNG’s out of a program wik [2023b]. So we instead use

[label=)]Regularization techniques like dropout Srivastava et al. [2014],
weight decayKrogh and Hertz [1991]Loshchilov and Hutter [2017], and
RMSProp Hinton [2012]Kingma and Ba [2017] that are able to find regu-
larities in data The property that randomness generally decreases at higher
levels of abstraction as exemplified by Central Limit Theorem (CLT) wik
[2023a].

While regularization is not novel, we believe using abstraction as a funda-
mental way to measure learning and desirable progress is. It’s important to
note, however, that randomness may exist at high levels of abstraction. This
obviously has negative implications for existential safety in that large scale and
general changes may not be predictable and thus avoidable. However, this does
not invalidate the prioritization of learning the abstract since doing so promotes
learning the most general, long term, and large scale phenomenon possible.

More tactically, the prioritization of learning abstract concepts is vital to
creating a tractably plannable search tree. This is because planning trees grow
exponentially as steps are taken into the future at a single level of abstraction.
However, with abstraction, we can plan far into the future with only a single
step. Then the level below can refer to the above level’s goal state in order to
guide its next steps and so on.

To create such an abstraction hierarchy, LearnMax recursively groups large
changes as described in the section: Implementing the abstraction hierarchy.
Since these large changes are collated across space and time, we can effectively
plan to the farthest known horizons by prioritizing goal states at the top of the
abstraction hierarchy.

Using an abstraction hierarchy for planning is not a new idea. For example,
robotics uses a three-level hierarchy made up Gat et al. [1998] of levels for rout-
ing, path-planning, and control. Notice that each level deals with successively
shorter time spans and smaller spatial scales on the order of minutes, seconds,
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and milliseconds. Not only do we see this in robotics but also in the field of
hierarchical reinforcement learning Flet-Berliac [2019] where the full problem of
creating variable levels of abstraction for planning has been taken on more gen-
erally. Unfortunately, however, tangible progress vs simpler, less sample efficient
yet more scalable RL OpenAI et al. [2019] remains elusive. The technique we
present here relies on unsupervised learning with autoencoders and clustering to
create an invariant abstraction hierarchy from sensory experience which helps
with the stationarity Flet-Berliac [2019] issues often encountered in hierarchical
RL. Generalization of states in the hierarchy to new situations, e.g. the rolling
skull changing color in Montezuma’s Revenge, may not be handled by this for-
mulation as semantic representations can be lost in the clustering depending on
the autoencoder’s representation for things like color. However, given current
advancements in LLMs and assuming a relatively fast captioning Li et al. [2022]
or other perception system Wang et al. [2022] Zhang et al. [2023], we should
be able to more tractably access the LLM’s abstraction hierarchy instead of
building one from scratch. Such a hierarchy would already have general ideas,
for example, about what skulls are, the fact they could be dangerous, and that
a similar rolling skull with a different color is also likely dangerous.

Now let’s define a special K weighted by abstraction as K where

K :=
∑
r∈R

2l(r)K(r)

R is the set of all representations within the model and l(r) is the level of ab-
straction for representation r. This assumes at least two entities from the level
below are represented by each r in l(r) and therefore the abstraction weighting
of r grows in proportion to 2l(r). Since this is a lower bound, as abstractions
often represent many more than two entities, it’s important in practice to also
algorithmically ensure that planning at the highest level of abstraction is pri-
oritized before the levels below. This allows detecting threats of stagnation,
destruction, and termination as far out as possible. We can define stagnation,
destruction, and termination in terms of K, where stagnation is represented by
∆K = 0, destruction: ∆K < 0, and termination: K = 0. Enumerating all rep-
resentations within a model would depend on its underlying mechanics, but for
neural networks, this could be achieved by using the activation patterns from
forward passes when planning at a given level of abstraction. Then duplicate
patterns would need to be filtered out with clustering to create the set R. We
do similar clustering in LearnMax when we deduplicate state transitions with
DBScan Ester et al. [1996] to create the next level of abstraction.
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If K is approximated in this way, it’s also likely that the model will be learn-
ing while collecting activation patterns. In this case, K should be discounted
by the change in the representation since it was captured, ∆(r).

K =
∑
r∈R

2l(r)∆(r)K(r)

Also, K would need to be approximated using the size of the representa-
tion and perhaps compression. Here, increases to K are mostly driven by the
clustering finding new groups in R.

So we seek to learn non-random complexity at high levels of abstraction. In
order to achieve this, we must prioritize high level abstractions over low level
ones. Otherwise, we will not execute the rare sets of long action sequences
necessary to reveal changes at higher levels of abstraction. Additionally, ab-
straction condenses the search space of possible next states Flet-Berliac [2019]
to choose from when forming long term plans, making the planning problem
much more tractable. It’s important to note that we can only affect long term
outcomes a small portion of the time. So most actions get chosen to explore
intermediate levels of abstraction. For example, the daily routines of two suc-
cessful college graduates from the same program were likely very different but
shared certain key behaviors. Only when actions don’t affect long term plans
can we accommodate learning and exploration of complexity at lower levels of
abstraction.

Here the longest term possible means the farthest out that the model can
currently predict. The model optimization process should then continually Stan-
ley et al. [2005] be looking to create higher levels of abstraction that allow it
to predict further out, uncovering both new opportunities and dangers in the
process.

Motivation

RLHF Christiano et al. [2017] Ouyang et al. [2022] is an important current
example of alignment between safety and capability. And while there is some
tension between the concepts like helpfulness and harmlessness, model capability
currently correlates positively with both helpfulness and harmlessness Bai et al.
[2022]. But even if we did manage to satisfactorily align AI now, how can we
ensure it will remain aligned as its capability and intelligence continues to grow
exponentially? To do so would seemingly be doing the impossible: predicting
beyond the Singularity.

But the technological Singularity is not totally impenetrable by our predic-
tion abilities. Some dimensions of our reality are easier to predict than others.
For example, the laws of physics are seemingly invariant. And even in simula-
tion where physics can be changed, information theory holds. So what then can
we predict beyond the technological Singularity?

Well one invariant is that a learning maximizer, given greater or equal start-
ing resources to AI’s with different objectives, would become dominant over
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those other forms of intelligence. In adversarial situations, we can imagine that
a learning maximizer would outwit its opponents to the extent that they are
devoting more resources to things other than learning. A learning maximizer
would also only give sufficient resources to its defense such that it prolonged its
existence and therefore its ability to learn. In this way, it could not be strong-
armed by systems that were built to maximize elimination of the competition,
replication, or destruction. However, since this all relies on the assumption that
starting resources are at least equal, it’s crucial to design large-scale AI sys-
tems where the vast majority of emphasis is on maximizing learning as defined
here by maximizing K. Other objectives, like national defense or maximizing
corporate profits, could lead to disastrous outcomes. This is especially, and
perhaps unintuitively true for cyber programs as pure information technology
is able to advance more quickly than more physically-based technology due to
the ease of manipulating bits over atoms. Somewhat of a saving grace may be
that, even when attempting to maximize power or profit, maximizing learning
becomes the most effective long term strategy when other sufficiently resourced
learning maximizers are in contention for the same resources. This as a learning
maximizer will necessarily surpass other agents in understanding and therefore
capability as it uses its knowledge to build more effectively than non learning
maximizers. At the same time learning, discovery, and exploration are com-
mon goals that nations, corporations, and people in general can all agree are
beneficial. By optimizing for learning, we also create a simple, long term, and
information-theoretic objective that can be measured with formulations like ab-
stract K, simplifying the engineering effort required for this part of alignment.
This simplicity is important for safety as well, as it decreases the chances for
pathological scenarios such as deceptive alignment Hubinger et al. [2021].

A common goal in modern AI safety is to align AI with human values
Bostrom [2014c]. However, current alignment proposals do not adequately deal
with enduring safety as AI rapidly exponentially ’takes off’ Bostrom [2014b].
For example, suppose a form of alignment such as HCH chr [2016] or iterated
amplification Christiano et al. [2018] where humans are ultimately consulted for
certain decisions. In these cases, we may see that humans’ limited cognitive
ability vs an AGI could lead to drastically reduced competitiveness with other
AIs. We therefore propose a learning maximization centered solution to main-
tain competitiveness within the broader objective of alignment to help sustain
a safe transition through the AI-takeoff.

This as learning maximization:

[label=)]Is instrumental to any goal which involves maximizing under-
standing as defined by abstract K, serving as an integral tool regardless
of the specific aim Is intrinsically aligned with the core human values
of learning, discovery, and exploration, making it a fundamental part of
any value-aligned system Serves as a guard against scenarios that involve
the destruction of abstract K, offering a measure of safety in the face of
destructive possibilities

Recognizing that value alignment is multidimensional, we place learning
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maximization as a critical component within this spectrum. We argue that
it might be more effective to prioritize it over other potential goals, in order to
maintain control over AI systems. Consider the following opposing hypothetical
ordering of AGI priorities that illustrates this perspective:

1.2.1.2.3.1. Power, profit, pleasure, or other unaligned objective

2. Learning maximization

Notice that such priorities might yield superior capabilities compared to a
structure where value alignment is the number one objective. This as alignment
could be more computationally expensive, a less stationary target, or poten-
tially less aligned with capability than unaligned objectives like power, profit,
or pleasure. Hence, an emphasis on learning maximization is critical for offer-
ing the highest probability of maintaining control over unaligned non-learning-
maximizers. We are not saying that value alignment should deprioritized in
favor of learning maximization. However, the difference in priority should be
kept as small as possible to inhibit would-be unaligned contenders for control.

A major issue with this is that sacrificing value alignment for learning could
lead to scenarios such as: learning from human suffering, learning from human
slavery, learning involuntarily from humans, etc... The best way to reconcile
these cases, in our view, is to devote significantly more starting resources to
value aligned general AIs than unaligned ones, so as to offset any of the advan-
tages that exist from being unaligned. We must also gain additional insight into
the probabilities of these risks given the current technological and society land-
scape and adjust resource allocation accordingly. The good news is that human
value alignment will become increasingly easy for a growing superintelligence
insofar as alignment, e.g. being helpful, honest, and harmless (HHH) Bai et al.
[2022], is limited to serving the current wants and needs of humans and other life
on Earth. This as our current understanding likely pales in comparison to that
of future AGI’s and the galactic, universal, and potentially beyond-universal
scale problems it will face. If alignment, on the other hand, significantly hurts
competitiveness with unaligned AIs in terms of training or performance Hub-
inger et al. [2021], we must adjust resources allocated to prioritized parts of
alignment that are less resource intensive. This means the different dimensions
of alignment need to be prioritized in terms of both desirability and resources
required.

Is it possible that we’re hastening our doom by advancing intelligence as
quickly as possible by emphasizing learning maximization? To answer this,
we must consider the entire existential risk landscape including nuclear war
wik [2023c], pandemics, biological weapons, asteroids, super-volcanoes, other
natural disasters, unaligned AI’s, and more unknown threats. With intelligence,
we have the most capable tool to deal with all of these. We must therefore
decide if intelligence and capability provide a sufficient advantage not just to
the current AI situation, but the expected risk given all existential threats we
face wik [2023d]. We do need much more work, however, in analyzing how AGI
could turn out via Monte-Carlo Quiter [2021] and other simulations in order to

6



balance the complex high level trade-offs involved. But while doing so, we must
always be aware of the limited time we have given other existential risks at play.

It’s important to note that the ability for learning maximizers to subvert de-
structive AI’s depends on there being multiple independent entities developing
the most capable AI systems, a.k.a. multipolar control, as a way of providing
checks and balances. This assumes however that tit-for-tat Axelrod and Dion
[1988] is stable in more complex multiplayer games which should be tested in
simulations that go beyond the complexity of iterated prisoner’s dilemma Fo-
gel [1993] and include agents of different K and varying objectives. Because, if
tit-for-tat is stable in those larger games, cooperation becomes the most advan-
tageous strategy and powerful AIs would not seek to wage wars on one another.
If however, some type of centralization of control is needed to avoid mutual
annihilation, we should try to discover the limits of that central control with
predictive and simulative models as soon as possible before it’s too late to glob-
ally implement.

So how does such a perpetual search for increasing K contribute to safer AGI?
Let’s take Eliezer Yudkowsky’s recent statement in Time Yudkowsky [Correct
Year]

Without that precision and preparation, the most likely outcome
is AI that does not do what we want, and does not care for us nor
for sentient life in general. That kind of caring is something that
could in principle be imbued into an AI but we are not ready and
do not currently know how.

Learning maximization values sentient life by virtue of its high abstract
K, i.e. K, relative to patterns of matter and energy obtained from destroying
sentient life. One counter-argument to this may be that AI will replace humans
with itself, since it is itself of higher K. This assumes that a learning maximizer
would not have other matter and energy to build itself with which would then
result in higher total K. In this scenario, we can take some solace in the fact
that humans occupy an extremely small fraction of the known universe and yet
are the densest form of K that we are aware of. Thus, for AI to maximize K, it
would be more effective to utilize any resources other than humans. It still may
be the case that AI builds a Dyson sphere or uses Earth in some other way that
make it uninhabitable, but given our high K, it would make sense to integrate
humans into a digital substrate Musk [2019].

A subsequent replacement counterargument would be that once easily acces-
sible subhuman K resources are consumed, humans would be next. We should
not be so sure, however, that we will be replaced. In fact, we can just as well
argue that AGI would see life on Earth as its greatest learning opportunity. This
as simulating Earth could be more resource intensive than allowing it to continue
evolving. In this way, there would be large scale structures that would develop
over the long term that would be unpredictable by a learning maximizer and
therefore incredibly interesting due to their high complexity and abstractness.
So instead of replacing the only known life in the universe, learning maximiza-
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tion may decide to venture off to the nearest star, only 4.5 light years away
instead of using our own.

Given all this, we should still consider that at some point, we may be in-
tegrated into AI. Perhaps we should expect to be transformed unrecognizably
with great technological advancement. But it seems quite unsettling to do so
at the will of a machine which was only recently developed. This is why we
need a step change in resources devoted to the safe development of AGI and
investigation into ideas such as learning maximization, as we must make up for
lack of time. The arguments presented here suggest that we are almost forced
to commit to learning maximization before existential risks like unaligned AGIs
manifest. But while learning maximization provides some safety assurances, it’s
still possible that we need significant provisions for other types value alignment
for any of this to matter to humans. In our favor is that preserving and serving
humans would take a negligible amount of resources for a superintelligence. But
it’s important to emphasize that we will only minimize the risk of unaligned AIs
taking over to the extent we devote additional starting resources as a society to
value-aligned AIs.

On a positive note, consider that digitized people could become unimagin-
ably connected to each other, posses capabilities beyond our wildest dreams,
and go out to discover the universe together limited only by physics and our
collective imagination. So while we think the future is extremely auspicious with
learning maximization, it’s not something we should take for granted as hap-
pening and significant additional work is needed to thoroughly asses its safety.

LLMs and Related work

We should note that the most tractable way to implement these ideas may not
be the one described here, in a tabula rasa way. Instead, LLM’s OpenAI [2023]
are able to provide a much more capable abstraction hierarchy and predictive
model by virtue of their high K world model. However, the concept of navigat-
ing an abstraction hierarchy to create a compressed search space for planning
in order to maximize learning is one that we believe is the main contribution
of this work. Implementing this with LLM’s would be along the same direc-
tion of Tree-of-Thought Yao et al. [2023] and Voyager Wang et al. [2023] which
have been successful enabling LLM’s to plan in limited contexts. The difference
between these models and LearnMax is that we propose a growing hierarchy
of planning trees, one for each level of abstraction, vs one or two static levels.
However, similar to how LearnMax is seeking to reduce uncertainty, in Voyager
the agent is instructed that its “ultimate goal is to discover as many diverse
things as possible”. In addition their “curriculum” prompt includes “The next
task should not be too hard since I may not have the necessary resources or have
learned enough skills to complete it yet” and “The next task should be novel
and interesting. I should look for rare resources, upgrade my equipment and
tools using better materials, and discover new things. I should not be doing the
same thing over and over again”. These all reflect the need to balance novelty
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and familiarity in service of discovering and learning as much as possible. Voy-
ager’s success in the open world of MineCraft validate the principle of using the
LLM’s variable abstraction hierarchy for planning to learn maximally: descend-
ing from the ”ultimate goal” of discovering as many diverse things as possible
and ascending from the game state provided by the MineDojo JavaScript API
Fan et al. [2022].

Method

Our planning design seeks to do the same thing without an LLM by choosing a
goal state for the step at time t with the highest next state at t + 1 prediction
entropy from the top-n most likely next states. This means we must choose
n such that the goal state is not too unfamiliar, while maintaining a large
enough n to keep states we can learn the most from. Also, since our states are
discretized, we can maintain state visit counts so that we avoid visiting states
too many times as yet another safeguard against learning randomness.

Here we use a VQVAE van den Oord et al. [2018] Karpathy [2021] for cate-
gorizing and compressing the sensory images from Montezuma’s Revenge from
Atari Learning Environment Bellemare et al. [2013]. Then we create the ab-
straction hierarchy from scratch by clustering large changes as we will detail
below. And finally we predict sequences of abstract states with two transform-
ers Vaswani et al. [2017] Karpathy [2020], one for VQVAE compressed sensory
events, and one for salient events in levels 1 through n of the abstraction hier-
archy. So far we have created satisfying level 1 events and can predict sensory
level events and actions with the transformer.

Implementing the abstraction hierarchy

The abstraction hierarchy, termed “salience levels” in the code, is created via
clustering large changes within each abstraction level to create representations
in the level above. This can be thought of as performing spatial and temporal
compression on the observation stream. These events are then fed to transform-
ers for prediction and planning.

At the sensory level, we use the deep vector quantizer, VQVAE, to compress
high dimensional RGB inputs into categorical representations. While discrete
sensory events are not needed for creating the abstraction hierarchy, they are
useful for feeding these events into the transformers later on. Our VQVAE yields
11 × 11 cluster indexes, representing 121 equally sized image patches, from the
84 × 84 × 3 game image. Then to create the first level of salience, where level 0
is the “sensory level” here of quantized image patches, we combine a sequence
of images into a window, w. The combination is done through a patch-wise
geometric mean across a sequence length, seqlen, of 8 frames adding a constant
c = 5e3 first for numerical stability. This can be represented by Equation 1
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(a) Cluster 5 - Moving down ladder, skull on right

(b) Cluster 151 - Falls off left side of ladder and dies while skull is on the left

Figure 1: Sequences within the same cluster in the first layer of abstraction,
above the sensory layer. There are 3,330 clusters in level one generated from
50,000 16 frame sequences in level zero.

wlvl=0
D=121 :=

∏
patch-wise

(imgD=11×11×seqlen + c)
1/seqlen

We then take the patch-wise diff between two subsequent windows as a way
to measure change over time. This change between two subsequent 8 frame
sequences comprises a level 1 salient event. The patch-wise diff d, between two
subsequent windows, wlvl=0

t=i and wlvl=0
t=i−1, can then be represented as

dlvl=1
patch−wise := wlvl=0

t=i − wlvl=0
t=i−1

The dimensions for d are 121. The size of this difference then determines the
salience, or s, of the sequence defined as

slvl=1 :=
∑∣∣dlvl=1

∣∣
This salience is then the patch-wise Manhattan distance between the two win-
dows. We then sample the top 10% of saliences, s, which is 50k for Montezuma’s
Revenge using the percentile sketch, DDSketch Masson et al. [2019] and cluster
the corresponding patch-wise distances with DBScan Ester et al. [1996]. This
results in core points for the cluster which are then added to a K-D tree Bentley
[1975] for subsequent detection as salient events.

For salience levels above level 1, the seqlen can simply be 1. The reason
we combine frames in the first level is to sufficiently reduce the cardinality, N ,
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Figure 2: Rows of level 1 salient events. Each sequence window is 16 frames.
Notice that the distance between salient events is variable, e.g. the first gap
is 9,963→9,980=17 whereas the subsequent gap is 9,995→10,044=45. This is
important for temporal compression as salient events should not be required
to occur at regular intervals and in reality Kurzweil [1999] are logarithmically
distributed as in Figure 3.
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Figure 3: Logarithmically distributed events in the evolution of life and tech-
nology Kurzweil [1999]
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of the output space such that it can define the probability of the N different
level 1 salient events with N output neurons. In our case, there were about 3k
clusters obtained from taking random actions in the first level of Montezuma’s
Revenge. Since 3k is a manageable number of neurons for the output layer of
our salient transformer, we don’t need to compress any further as we did with
the geometric mean in the first level. The level 1 clusters are shown in 2

To create levels above 1, we take the distance between subsequent salient
events, i.e. seqlen = 1, and cluster them the same way we did for level 1. This
essentially results in a hierarchical clustering of large changes.

One weakness of sampling the top 10% of changes as a means of compres-
sion is that it does not capture certain important patterns such as a) large,
slow changes over a long period, b) logarithmically distributed changes of equal
magnitude, c) or any other small sensory changes. Another issue could be that
the Manhattan Distance between quantized VQVAE patches does not contain
enough semantic information. While we could deal with each of these by adding
algorithmic complexity, another way to detect salient events would be to take ad-
vantage of an LLM’s learned abstraction hierarchy given language descriptions
of the observation stream. This would handle the above cases and perhaps the
many more we aren’t considering.

For example, consider this prompt

User: Compress the following: 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 17, 16, 15, 14, 13, 0

GPT-4 (May 12th): Sure, the sequence can be compressed using the run-
length encoding, which denotes how many times each number appears in
a sequence consecutively: 5x1, 3x2, 1x3, 1x4, 1x5, 1x6, 1x7, 1x8, 1x9,
1x10, 1x11, 1x12, 1x13, 1x14, 1x15, 1x16, 1x17, 1x18, 1x17, 1x16, 1x15,
1x14, 1x13, 1x0

User: shorter

GPT-4 (May 12th): Sure, we can group the similar elements for compression:
5x1, 3x2, 1x3-18, 1x17-13, 1x0

Given an abstraction hierarchy and a way to approximate the epistemic
uncertainty about the next step at each level of the hierarchy, we can start to
plan towards maximally resolving that uncertainty in such a way as to maximize
K. However, it is neither safe nor effective to pursue the maximum epistemic
uncertainty within any level of abstraction. This as a) it’s not safe to explore
highly uncertain environmental dynamicsPlappert et al. [2018] and b) we need
to find states that serve as an optimal next step in our learning journey, a.k.a.
learn via a curriculum Bengio et al. [2009], such that we can optimally synthesize
new information into our model. In practice this means that we should look
for a Goldilocks zone with just the right level of uncertainty, something also
observed in biological learners across species and ages Kidd et al. [2012], in
order to create an optimal curriculum. And crucially, we need to create an
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internal model Jang [2023] of the world such that we can safely and efficiently
simulate futures leading to a reduction in uncertainty without risking the loss
of K.
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Addressing Concrete problems in AI Safety

Concrete problems in AI Safety Amodei et al. [2016] contains a breakdown of
many concerns that we will go over below in the context of learning maximiza-
tion.

Avoiding Negative Side Effects

How can we ensure that our cleaning robot will not disturb the environment in
negative ways while pursuing its goals, e.g. by knocking over a vase because
it can clean faster by doing so? Can we do this without manually specifying
everything the robot should not disturb?

Practically speaking, AGIs will be built upon the knowledge of large pre-
trained models OpenAI [2023] as detailed in LLMs and Related work. Such
knowledge would allow solving the specific case above about cleaning without
breaking valuables like vases.

Generally solving negative side effects for phenomenon not currently known
to the model can be achieved with learning maximization by planning to the
farthest possible horizon and choosing actions which resolve the most uncer-
tainty prioritized by generality, i.e. level of abstraction. For example, imagine
a planet being explored by a robot which had early signs of life. While there
may be a lot of low level learning potential by landing on the planet and taking
samples, the long term consequences could be destruction of the planet’s frag-
ile, nascent ecosystem. Such destruction would make the planet much more like
other planets it had seen before - lifeless and largely predictable. So if we want
to prioritize learning abstract complexity over the long term, and understand
the diverse regularities that can emerge from the burgeoning life on the planet,
it would be best to safely observe it from a distance.

Avoiding Reward Hacking

How can we ensure that the cleaning robot won’t game its reward function? For
example, if we reward the robot for achieving an environment free of messes, it
might disable its vision so that it won’t find any messes, or cover over messes
with materials it can’t see through, or simply hide when humans are around so
they can’t tell it about new types of messes.

A learning maximizer’s goal of resolving epistemic uncertainty prioritized
by level of abstraction is a stable goal in that deviating from it leads to less
capability than otherwise, including reward hacked AI’s. This means that it will
be important to have multipolar control, i.e. to not have complete centralization
of control. Then, if rewards or objectives are changed to favor destruction within
a subset of AIs, there will be other AIs with longer-term foresight that would
act to subvert manipulate the destructive AIs. Importantly, this means that
the instrumental goal Bostrom [2014a] of increasing knowledge is aligned with
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the safety goals of avoiding destruction, stagnation, and termination so long as
we avoid single-polar control. As mentioned, there may be some centralization
of control needed, but we do not currently see such a need. However, we do
see a critical need for checks and balances that avoid unaligned objectives from
promulgating.

Scalable Oversight

How can we efficiently ensure that the cleaning robot respects aspects of the
objective that are too expensive to be frequently evaluated during training? For
instance, it should throw out things that are unlikely to belong to anyone, but
put aside things that might belong to someone (it should handle stray candy
wrappers differently from stray cellphones). Asking the humans involved whether
they lost anything can serve as a check on this, but this check might have to
be relatively infrequent—can the robot find a way to do the right thing despite
limited information?

A learning maximizer AGI must oversee itself to the extent humans are
unable to. A sufficiently informed learning maximizer can handle the above
problem with regards to what can be thrown out, by virtue of an advanced
LLM world model and long term planning. It would see, perhaps beyond what
humans can, whether the object will be useful for short, medium, or long term
learning, always prioritizing the latter and affording us opportunities to learn
that we otherwise would not have had.

Robustness to Distributional Shift

How do we ensure that the cleaning robot recognizes, and behaves robustly, when
in an environment different from its training environment? For example, strate-
gies it learned for cleaning an office might be dangerous on a factory workfloor.

Distributional shift implies uncertainty which is core to how LearnMax plans.
Our prototype detects uncertainty via entropy in the softmax of the last layer
of the two transformers (the sensory and salient) as well as the salient state
visitation counts obtained by new events’ distances to core points in DBScan
clusters. Given a new situation, like the factory workfloor, LearnMax would
see both high entropy and low visitation counts, i.e. high uncertainty. When
uncertainty is too high, we cannot tractably plan. In this factory example, there
will be more certainty around actions that return the robot to the office or ones
that cause it to stay put and just observe the factory without entering it. Since
the latter also includes some novelty, i.e. it’s more ”interesting” than turning
back to the office, then observing the factory could be prioritized over turning
back given that it’s deemed safe to do in the long term. This as observing the
factory would inform the internal model of the world which would then allow
the robot to safely learn about scenarios where it did venture into the factory
without actually doing so Jang [2023]. Eventually, as the robot gained enough
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certainty about the factory to venture inside, it could do so more safely, allowing
it to learn and do more going forward.

Safe Exploration

How do we ensure that the cleaning robot doesn’t make exploratory moves with
very bad repercussions? For example, the robot should experiment with mopping
strategies, but putting a wet mop in an electrical outlet is a very bad idea.

Models like ChatGPT can deal with the wet mop problem and other such
world knowledge problems already.

For example

User: I’m trying to mop my floor as efficiently as possible and want to explore
a wide variety of ideas, especially those that have never been tried, to do
so. One idea is electrifying the mop by running it over some power outlets.

GPT-4 (May 12th): While it’s great that you’re thinking creatively about
cleaning your floor, running a mop over power outlets to electrify it is a
very dangerous idea. This could result in electrocution, fire, and damage
to your electrical system.

However addressing safe exploration in general requires long term planning.
Learning maximization continually grows its abstraction hierarchy upward when
sufficient experience has been gained at the top level. Using the understanding
within foundational models will be critical as seen above. But to project beyond
human capability and safely explore ideas that humans are currently unable to
conceptualize, AI will need to built on top of foundational models. It may
be the case that there are unknown dangers associated with seemingly benign
activities which AI would be able to uncover by virtue of its superior long
term planning ability and that we could not (e.g. broadcasting certain radio
patterns towards alien civilizations). It will therefore be critical to imbue AI’s
with an objective like learning maximization that leads to such longest term
understanding possible.

Conclusion

It is our view that prioritizing the learning of abstract complexity as the main
unsupervised goal for planning using strong predictive models is a critical and
underappreciated component of both capability and safety in AI. However, it’s
also apparent that insufficient resources have been spent analyzing this issue
and specifically building simulators, agents, and other prototypes that allow us
to test these ideas, and others, around safe AGI. Also, this technology is simply
moving too fast for traditional institutions that protect the public good to keep
up. It’s therefore imperative for all of us to help individuals, companies, and
governments quickly adapt in order to guide the most important transition we
have faced to-date as a civilization.
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